Magmas near the critical degassing pressure drive volcanic unrest towards a critical state

نویسندگان

  • Giovanni Chiodini
  • Antonio Paonita
  • Alessandro Aiuppa
  • Antonio Costa
  • Stefano Caliro
  • Prospero De Martino
  • Valerio Acocella
  • Jean Vandemeulebrouck
چکیده

During the reawaking of a volcano, magmas migrating through the shallow crust have to pass through hydrothermal fluids and rocks. The resulting magma-hydrothermal interactions are still poorly understood, which impairs the ability to interpret volcano monitoring signals and perform hazard assessments. Here we use the results of physical and volatile saturation models to demonstrate that magmatic volatiles released by decompressing magmas at a critical degassing pressure (CDP) can drive volcanic unrest towards a critical state. We show that, at the CDP, the abrupt and voluminous release of H2O-rich magmatic gases can heat hydrothermal fluids and rocks, triggering an accelerating deformation that can ultimately culminate in rock failure and eruption. We propose that magma could be approaching the CDP at Campi Flegrei, a volcano in the metropolitan area of Naples, one of the most densely inhabited areas in the world, and where accelerating deformation and heating are currently being observed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth's oxygenation.

The behavior of C, H, and S in the solid Earth depends on their oxidation states, which are related to oxygen fugacity (fO2). Volcanic degassing is a source of these elements to Earth's surface; therefore, variations in mantle fO2 may influence the fO2 at Earth's surface. However, degassing can impact magmatic fO2 before or during eruption, potentially obscuring relationships between the fO2 of...

متن کامل

Degassing during quiescence as a trigger of magma ascent and volcanic eruptions

Understanding the mechanisms that control the start-up of volcanic unrest is crucial to improve the forecasting of eruptions at active volcanoes. Among the most active volcanoes in the world are the so-called persistently degassing ones (e.g., Etna, Italy; Merapi, Indonesia), which emit massive amounts of gas during quiescence (several kilotonnes per day) and erupt every few months or years. Th...

متن کامل

Massive submarine gas output during the volcanic unrest off Panarea Island (Aeolian arc, Italy): Inferences for explosive conditions

The possibility of understanding natural processes leading to explosive events in volcanic systems provides advantages for a better management of possible volcanic crises. On account of the possibility of the occurrence of other phenomena, such as tsunamis, the explosions driven by submarine volcanic systems are of particular interest, although little investigated. The recent sudden increase in...

متن کامل

Inferring Volcanic Degassing Processes from Vesicle Size Distributions

bubble size distributions, fractals, nucleation, volcanism Both power law and exponential vesicle size distributions (VSDs) have been observed in many different types of volcanic rocks. We present results of computer simulations and laboratory analogue experiments which reproduce these findings and show that the distributions can be interpreted as the product of continuous bubble nucleation res...

متن کامل

On the chemistry of mantle and magmatic volatiles on Mercury

0019-1035/$ see front matter 2010 Elsevier Inc. A doi:10.1016/j.icarus.2010.12.014 ⇑ Fax: +1 480 965 8102. E-mail address: [email protected] The surface of Mercury contains ancient volcanic features and signs of pyroclastic activity related to unknown magmatic volatiles. Here, the nature of possible magmatic volatiles (H, S, C, Cl, and N) is discussed in the contexts of formation and evolution of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016